392109 Sentiment Analysis and Opinion Mining (S) (SoSe 2013)

Contents, comment

Sentiment Analysis and Opinion Mining (Seminar), Dr. Roman Klinger

Diese Veranstaltung ist dem Modul "Statistical Natural Language Processing" und "Individuelle Ergaenzung" mit 5 LP zugeordnet.

EINE ANMELDUNG IST NACH WIE VOR MOEGLICH! BEI INTERESSE BITTE E-MAIL AN MICH!

Stimmungsanalyse und Meinungsanalyse in Texten (Sentiment analysis und opinion mining) adressieren das Problem, Texte (Tweets, Produktrezensionen etc.) als positiv oder negativ zu klassifizieren und das jeweilige Objekt der Meinungsaeusserung (ein Aspekt u.ae.) zu erkennen. Woerterbuchbasierte Verfahren sowie maschinelle Lernverfahren, ueberwacht und ueberwacht, sind hierbei ueblich. Wir diskutieren verschiedene Ansaetze Text zu klassifizieren, relevante Passagen zu extrahieren sowie den Umgang mit Negationen, verschiedenen Domaenen, Ironie und verschiedene Anwendungen. Jeder Studierende wird ein Thema auswaehlen welches mit einer oder mehreren Veroeffentlichungen korrespondiert. Hierzu wird ein Vortrag gehalten sowie aus Ausarbeitung geschrieben. Als Vortragssprache kann Englisch oder Deutsch gewaehlt werden.

Sentiment analysis and opinion mining are approaching the task of classifying text into being positive or negative about e.g. a topic, aspect, product, or person. Dictionary-based methods as well as machine learning methods, both supervised or unsupervised, are common. We will discuss different approaches to classify text from different sources and domains, how to extract relevant passages, how to deal with negation, domains, irony, and other attributes of an opinionated expression and what possible applications are. Psychological background may be discussed in addition. Each student is assigned a topic, roughly corresponding with a publication, about which a talk will be given and a paper is written.
The language of the presentations and papers to be written can be English or German.

External comments page

https://sites.google.com/site/saomss2013/

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  

Show passed dates >>

Subject assignments

Module Course Requirements  
39-Inf-SNLP Statistical Natural Language Processing (Project-) Seminar Statistical Natural Language Processing Student information
- Graded examination Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Bioinformatik und Genomforschung / Master (Enrollment until SoSe 2012) Individueller Ergänzungsb Wahl 4. 5 unbenotet  
Intelligente Systeme / Master (Enrollment until SoSe 2012) Wahl 4. 5 unbenotet  
Kognitive Informatik / Bachelor (Enrollment until SoSe 2011) Individueller Ergänzungsb Wahl 6. 5 unbenotet  
Molekulare Biotechnologie / Master (Enrollment until SoSe 2012) Individuelle Ergänzung Wahl 6. 5 unbenotet  
Naturwissenschaftliche Informatik / Bachelor (Enrollment until SoSe 2011) Individueller Ergänzungsbereic Wahl 6. 5 unbenotet  

No more requirements
No eLearning offering available
Registered number: 9
This is the number of students having stored the course in their timetable. In brackets, you see the number of users registered via guest accounts.
eKVV participant management:
eKVV participant management is used for this course.
Show details
Address:
SS2013_392109@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_37716596@ekvv.uni-bielefeld.de
Coverage:
1 Students to be reached directly via email
Notes:
Additional notes on the electronic mailing lists
Last update basic details/teaching staff:
Friday, December 11, 2015 
Last update times:
Wednesday, February 20, 2013 
Last update rooms:
Wednesday, February 20, 2013 
Type(s) / SWS (hours per week per semester)
seminar (S) / 2
Department
Faculty of Technology
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=37716596
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
37716596