240025 Gewöhnliche Differentialgleichungen (V) (SoSe 2021)

Contents, comment

Die Theorie gewöhnlichen Differentialgleichungen spielt eine zentrale Rolle in der Modellierung realer zeitabhängiger Prozesse. Viele physikalische Gesetze sowie quantitative Zusammenhänge in anderen Wissenschaften lassen sich als gewöhnliche Differentialgleichungen formulieren.

In der Vorlesung geht es neben der expliziten Berechnung der Lösungen in Spezialfällen, wo das möglich ist, vor allem um allgemeingültige qualitative Ergebnisse über die Existenz und Eindeutigkeit von Lösungen, ihre Abhängigkeit von den Anfangswerten und ihr Langzeitverhalten, aber auch um spezielle Erscheinungen wie die Entstehung von Schwingungen.

Bibliography

Jan W. Prüss & Mathias Wilke, Gewöhnliche Differentialgleichungen und dynamische Systeme, 2. Auflage, Birkhäuser, 2019.

Wolfgang Walter, Gewöhnliche Differentialgleichungen, 7. Auflage, Springer, 2000.

Vladimir Arnold, Gewöhnliche Differentialgleichungen, 2. Auflage, Springer, 2001.

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  

Show passed dates >>

Subject assignments

Module Course Requirements  
24-B-PRO_ver1 Profilierung Vorlesung gemäß Modulbeschreibung Graded examination
Student information
24-B-PSE-5a Profilierung Strukturierte Ergänzung a (5LP) Vorlesung gemäß Modulbeschreibung Student information
24-B-PSE-5b Profilierung Strukturierte Ergänzung b (5LP) Vorlesung gemäß Modulbeschreibung Student information
24-B-PSE_ver1 Profilierung Strukturierte Ergänzung Vorlesung gemäß Modulbeschreibung Graded examination
Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Studieren ab 50    

No more requirements
E-Learning Space
E-Learning Space
Registered number: 32
This is the number of students having stored the course in their timetable. In brackets, you see the number of users registered via guest accounts.
Address:
SS2021_240025@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_253950621@ekvv.uni-bielefeld.de
Coverage:
17 Students to be reached directly via email
Notes:
Additional notes on the electronic mailing lists
Email archive
Number of entries 0
Open email archive
Last update basic details/teaching staff:
Friday, December 18, 2020 
Last update times:
Friday, December 18, 2020 
Last update rooms:
Friday, December 18, 2020 
Type(s) / SWS (hours per week per semester)
lecture (V) / 4
Department
Faculty of Mathematics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=253950621
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
253950621