240034 Proseminar Graphen und Gruppen (PS) (SoSe 2014)

Contents, comment

Das Seminar soll eine erste Einführung in die geometrische Gruppen-Theorie geben. Dabei wollen wir Gruppen als Mengen von Symmetrien von geometrischen Objekten verstehen.

Dazu wird es zunächst eine Einführung in die Gruppentheorie, gefolgt von der Theorie von Graphen geben. Sobald das Handwerkszeug bereit steht, werden wir uns mit Operationen von Gruppen auf Graphen (und anderen geometrischen Objekten) beschäftigen und an Hand dieser versuchen etwas über die entsprechenden Gruppen zu erfahren.

Wir wollen uns vor allem mit Beispielen beschäftigen und einige interessante Familien von Gruppen kennenlernen.

Vorbesprechung: Mittwoch, 05.02., 14:15 in U5-133

Requirements for participation, required level

Lineare Algebra I und II

Bibliography

  • Oleg Bogopolski. Introduction to group theory. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zurich, 2008.
  • John Meier. Groups, graphs and trees, volume 73 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2008. An introduction to the geometry of infinite groups.

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  
weekly Do 10-12 X-E0-208 07.04.-18.07.2014
not on: 5/1/14 / 5/29/14 / 6/19/14
one-time Di 16:00-18:00   15.04.2014
one-time Di 16-18 X-E0-215 06.05.2014
one-time Mi 14-16 (s.t.) U2-135 16.07.2014

Hide passed dates <<

Subject assignments

Module Course Requirements  
24-E Ergänzungsmodul Mathematik Proseminar Study requirement
Ungraded examination
Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Mathematik / Bachelor (Enrollment until SoSe 2011) Kernfach MM05K Wahlpflicht 3. 4. 3 unbenotet  
Mathematik / Bachelor (Enrollment until SoSe 2011) Nebenfach MM05N Wahlpflicht 5. 6. 3 unbenotet  
Mathematik / Diplom (Enrollment until SoSe 2008) Wahlpflicht 3. 4. scheinfähig GS
Mathematik (Gym/Ge als zweites U-Fach) / Master of Education (Enrollment until SoSe 2014) M.M.05 Wahlpflicht 3. 3 unbenotet  

No more requirements
No eLearning offering available
Registered number: 11
This is the number of students having stored the course in their timetable. In brackets, you see the number of users registered via guest accounts.
Limitation of the number of participants:
Limited number of participants: 12
Address:
SS2014_240034@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_43661196@ekvv.uni-bielefeld.de
Coverage:
1 Students to be reached directly via email
Notes:
Additional notes on the electronic mailing lists
Last update basic details/teaching staff:
Friday, December 11, 2015 
Last update times:
Thursday, July 10, 2014 
Last update rooms:
Thursday, July 10, 2014 
Type(s) / SWS (hours per week per semester)
proseminar (PS) / 2
Department
Faculty of Mathematics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=43661196
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
43661196