285440 Optics Design and Simulation (V) (SoSe 2023)

Contents, comment

Modern optics and photonics relies to a large extent on numerical simulation for design and fabrication. Based on an elementary introduction of geometrical and physical optics and solutions of the electromagnetic wave equation the course will provide hands-on experience with state-of-the-art simulation tools (Python, ZEMAX, CST, Lumerical, or others).

The course starts by introducing analytical methods (paraxial optics, ABCD matrix method) implemented using high-level programming languages (e.g. Python) to demonstrate the basics of calculating the propagation of plane electromagnetic waves through space and across interfaces. The coherent superposition of waves and their propagation leading to interference and diffraction phenomena will then be covered quantitatively. These properties will then be expanded to the more complex case of Gaussian wave propagation using scalar diffraction theory. The simulation of free space propagation in this context will be discussed to cover differences between Fast Fourier Transform methods, direct integration and the finite difference method. This sets the ground for the optimization of complex optical systems in a optical design software package (Optalix or similar). Here, geometric aberrations, Zernike coefficients, wave aberrations, and physical optics modeling will be discussed.

So far, field variations in the vicinity of nanostructures with an extent of about one wavelength were neglected. On these scales the full Maxwell’s equations need to be solved for a given geometry. In the last section of the lecture interactions and optical phenomena on the nanoscale will be covered by solving Maxwell's equations for discretized complex geometries.

Topics:

  • Introduction to calculating ray propagation through lenses, apertures, etc in Python, paraxial imaging, simple components, ABCD matrices
  • Simulating plane wave interference and diffraction in Python
  • Scalar diffraction theory: propagation of Gaussian beams: the FFT approach
  • Scalar theory of diffraction: direct integration vs. finite difference method.
  • Splitting and mixing beams; Interpolation; Zernike Polynomials
  • Examples: Twyman-Green Interferometer / Michelson Interferometer
  • Optical design software: Basic definitions and handling, geometric aberrations: ray tracing, aberration theory, primary aberrations, chromatic aberrations, optical systems, wave aberrations, wave optics, optical systems correction/optimization
  • First steps in nanooptics: Mie theory
  • Overview of Maxwell solvers: Boundary element method, FDTD, Multiple scattering techniques, …
  • CST: Basic definitions and handling, Geometry modelling, parametrization of dielectric response, source definition, Mie scatterer, plasmon polaritons, absorption and scattering
  • Quantum coupling phenomena in nanooptics

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  

Show passed dates >>

Subject assignments

Module Course Requirements  
28-M-EP Experimentalphysik Experimentalphysik (B.1) Graded examination
Student information
Experimentalphysik (B.2) Graded examination
Student information
28-M-VBN Vertiefung Vertiefung (B.1) Graded examination
Student information
Vertiefung (B.2) Graded examination
Student information
Vertiefung (B.3) Graded examination
Student information
Vertiefung (B.4) Graded examination
Student information
28-M-VP Vertiefung Vertiefung (B.1) Graded examination
Student information
Vertiefung (B.2) Graded examination
Student information
Vertiefung (B.3) Graded examination
Student information
Vertiefung (B.4) Graded examination
Student information
Vertiefung (B.5) Graded examination
Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.


Regular attendance
Active participation in tutorial group
The exam is done in form of test exercises in the tutorial group

E-Learning Space

A corresponding course offer for this course already exists in the e-learning system. Teaching staff can store materials relating to teaching courses there:

Registered number: 13
This is the number of students having stored the course in their timetable. In brackets, you see the number of users registered via guest accounts.
Address:
SS2023_285440@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_394497037@ekvv.uni-bielefeld.de
Coverage:
11 Students to be reached directly via email
Notes:
Additional notes on the electronic mailing lists
Email archive
Number of entries 5
Open email archive
Last update basic details/teaching staff:
Thursday, December 15, 2022 
Last update times:
Friday, December 16, 2022 
Last update rooms:
Friday, December 16, 2022 
Type(s) / SWS (hours per week per semester)
V / 2
Language
This lecture is taught in english
Department
Faculty of Physics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=394497037
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
394497037