Jedes Wintersemester
10 Leistungspunkte
Die Angaben zur Moduldauer finden Sie bei den Studiengängen, in denen das Modul verwendet wird.
Die Studieren beherrschen weiterführende Inhalte und Methoden der Numerik für partielle Differentialgleichungen, insbesondere können sie selbstständig auch komplexe und ein hohes Maß an fachlichen Kompetenzen erfordernde Beweise in diesem Gebiet führen. Sie erweitern ihre Kenntnisse darin, wie partielle Differentialgleichung mit Hilfe von Computern gelöst werden, und können diese auf weitere Probleme (Parabolische Gleichungen, Strömungsprobleme oder nicht-lineare PDEs anwenden). Sie lernen sowohl die theoretischen Hilfsmittel für die entsprechende Fehleranalyse als auch wie man selber Simulationen am Computer durchführt.
Die Studierenden werden im Bereich Numerik der PDEs an aktuelle Forschungsfragen herangeführt. Sie können weitere Entwicklungsmöglichkeiten und Forschungsziele erfassen und einschätzen.
Ferner erkennen die Studierende weiter reichende Zusammenhänge zu bereits erarbeiteten mathematischen Sachverhalten. Sie können die bislang erlernten Kenntnisse und Methoden auf tiefer liegende mathematische Problemfelder übertragen und anwenden. Aufgrund einer intensiveren Auseinandersetzung erweitern die Studierende auch ihre mathematische Intuition.
Sie werden im Zusammenspiel mit weiteren vertiefenden Modulen fachlich und methodisch in der Lage sein, im Anschluss eigene Forschungsarbeiten, z. B. eine Masterarbeit im Bereich Numerik für PDEs zu verfassen.
In den Übungen bauen die Studierende ihre Fähigkeit zur fachmathematischen Diskussion aus und bereiten sich so weiter auf die Anforderungen des Mastermoduls, insbesondere auf die fachliche Diskussion im Rahmen des Masterseminarvortrags und die Verteidigung ihrer Masterarbeit, vor.
Weiterführende Lehrinhalte aus dem Bereich Numerik für partielle Differentialgleichungen sind zum Beispiel:
Dieses Modul bereitet inhaltlich eine Masterarbeit vor.
Solide Kenntnisse in der Numerik partieller Differentialgleichungen (24-M-ND-INPDE)
—
Modulstruktur: 1 SL, 1 bPr 1
Zuordnung Prüfende | Workload | LP2 |
---|---|---|
Lehrende der Veranstaltung
Tutorials Advanced Topics for Numerics of PDEs
(Übung)
Regelmäßiges Bearbeiten der Übungsaufgaben, jeweils mit erkennbarem Lösungsansatz sowie die Mitarbeit in den Übungsgruppen zu der Vorlesung des Moduls. Zu der Mitarbeit in der Übungsgruppe gehören in der Regel das zweimalige Vorrechnen von Übungsaufgaben nach Aufforderung sowie regelmäßige Beiträge zur fachlichen Diskussion in der Übungsgruppe, etwa in Form von fachlichen Kommentaren und Fragen zu den vorgestellten Lösungsvorschlägen. Die Veranstalterin/der Veranstalter kann einen Teil der Übungsaufgaben durch Präsenzübungen ersetzen. |
siehe oben |
siehe oben
|
(elektronische) Klausur in Präsenz von in der Regel 120 Minuten, mündliche Prüfung in Präsenz oder auf Distanz von in der Regel 40 Minuten. Eine elektronische Klausur auf Distanz ist nicht zulässig.
Studiengang | Profil | Empf. Beginn 3 | Dauer | Bindung 4 |
---|---|---|---|---|
Mathematical Economics / Master of Science [FsB vom 28.02.2025] | Mathematics | 2. o. 3. | ein Semester | Wahlpflicht |
Mathematical Economics / Master of Science [FsB vom 28.02.2025] | Economics | 2. o. 3. | ein Semester | Wahlpflicht |
Mathematics / Master of Science [FsB vom 28.02.2025] | 2. o. 3. | ein Semester | Wahlpflicht |
In diesem Modul kann eine automatische Vollständigkeitsprüfung vom System durchgeführt werden.