

Modulbeschreibung 24-M-ND-INPDE Einführung in die Numerik partieller Differentialgleichungen

Fakultät für Mathematik

Version vom 10.02.2026

Dieses Modulhandbuch gibt den derzeitigen Stand wieder und kann Änderungen unterliegen. Aktuelle Informationen und den jeweils letzten Stand dieses Dokuments finden Sie im Internet über die Seite

<https://ekvv.uni-bielefeld.de/sinfo/publ/modul/533546218>

Die jeweils aktuellen und gültigen Regelungen im Modulhandbuch sind verbindlich und konkretisieren die im Verkündungsblatt der Universität Bielefeld veröffentlichten Fächerspezifischen Bestimmungen.

24-M-ND-INPDE Einführung in die Numerik partieller Differentialgleichungen

Fakultät

Fakultät für Mathematik

Modulverantwortliche*r

Prof. Dr. Lubomir Banas

Prof. Dr. Lars Diening

Turnus (Beginn)

Jedes Sommersemester

Leistungspunkte

10 Leistungspunkte

Kompetenzen

Die Studierenden beherrschen die grundlegenden Inhalte und Methoden der Numerische Methoden für Partielle Differentialgleichungen, insbesondere können sie selbstständig komplexe und ein hohes Maß an fachlichen Kompetenzen erfordernde Beweise in diesem Gebiet führen. Die Studierenden lernen wie partielle Differentialgleichungen mit Hilfe von Computern gelöst werden. Sie lernen sowohl die theoretischen Hilfsmittel für die Fehleranalyse als auch wie man selbst Simulationen am Computer durchführt. Ferner erkennen die Studierende weiter reichende Zusammenhänge zu bereits erarbeiteten mathematischen Sachverhalten. Sie können die bislang erlernten Kenntnisse und Methoden auf tiefer liegende mathematische Problemfelder übertragen und anwenden. Aufgrund einer intensiveren Auseinandersetzung erweitern die Studierende auch ihre mathematische Intuition. In den Übungen bauen die Studierende ihre Fähigkeit zur fachmathematischen Diskussion aus und bereiten sich so weiter auf die Anforderungen des Mastermoduls, insbesondere auf die fachliche Diskussion im Rahmen des Masterseminarvortrags und die Verteidigung ihrer Masterarbeit, vor.

Lehrinhalte

Die folgenden grundlegenden Lehrinhalte aus dem Bereich Numerik für partielle Differentialgleichungen sind obligatorisch:

- Finite-Elemente-Methoden zur Simulation von Lösungen von partiellen Differentialgleichungen, insbesondere für elliptische partielle Differentialgleichungen
- Approximationstheorie, Interpolationsoperatoren, Fehleranalyse und Adaptivität
- nicht-konforme Finite-Elemente-Methode
- Endliche Methoden für Sattelpunktprobleme
- Stokes-Gleichungen

Empfohlene Vorkenntnisse

Solide Kenntnisse in den Grundlagen der Numerik

Notwendige Voraussetzungen

–

Erläuterung zu den Modulelementen

Modulstruktur: 1 SL, 1 bPr¹

Veranstaltungen

Titel	Art	Turnus	Workload ⁵	LP ²
Lecture Introduction to Numerics of PDEs	Vorlesung	SoSe	60 h (60 + 0)	2 [Pr]
Tutorials Introduction to Numerics of PDEs	Übung	SoSe	90 h (30 + 60)	3 [SL]

Studienleistungen

Zuordnung Prüfende	Workload	LP ²
<p>Lehrende der Veranstaltung Tutorials Introduction to Numerics of PDEs (Übung)</p> <p>Regelmäßiges Bearbeiten der Übungsaufgaben, jeweils mit erkennbarem Lösungsansatz sowie die Mitarbeit in den Übungsgruppen zu der Vorlesung des Moduls. Zu der Mitarbeit in der Übungsgruppe gehören in der Regel das zweimalige Vorrechnen von Übungsaufgaben nach Aufforderung sowie regelmäßige Beiträge zur fachlichen Diskussion in der Übungsgruppe, etwa in Form von fachlichen Kommentaren und Fragen zu den vorgestellten Lösungsvorschlägen. Die Veranstalterin/der Veranstalter kann einen Teil der Übungsaufgaben durch Präsenzübungen ersetzen.</p>	<p>siehe oben</p>	<p>siehe oben</p>

Prüfungen

Zuordnung Prüfende	Art	Gewichtung	Workload	LP ²

Lehrende der Veranstaltung Lecture Introduction to Numerics of PDEs (Vorlesung) <i>(elektronische) Klausur in Präsenz von in der Regel 120 Minuten, mündliche Prüfung in Präsenz oder auf Distanz von in der Regel 40 Minuten. Eine elektronische Klausur auf Distanz ist nicht zulässig.</i>	e-Klausur o. Klausur o. mündliche e-Prüfung o. mündliche Prüfung	1	150h	5
---	---	---	------	---

Legende

- 1** Die Modulstruktur beschreibt die zur Erbringung des Moduls notwendigen Prüfungen und Studienleistungen.
- 2** LP ist die Abkürzung für Leistungspunkte.
- 3** Die Zahlen in dieser Spalte sind die Fachsemester, in denen der Beginn des Moduls empfohlen wird. Je nach individueller Studienplanung sind gänzlich andere Studienverläufe möglich und sinnvoll.
- 4** Erläuterungen zur Bindung: "Pflicht" bedeutet: Dieses Modul muss im Laufe des Studiums verpflichtend absolviert werden; "Wahlpflicht" bedeutet: Dieses Modul gehört einer Anzahl von Modulen an, aus denen unter bestimmten Bedingungen ausgewählt werden kann. Genaueres regeln die "Fächerspezifischen Bestimmungen" (siehe Navigation).
- 5** Workload (Kontaktzeit + Selbststudium)

SoSe Sommersemester
WiSe Wintersemester
SL Studienleistung
Pr Prüfung
bPr Anzahl benotete Modul(teil)prüfungen
uPr Anzahl unbenotete Modul(teil)prüfungen