Modul 24-M-AL-COMA Kommutative Algebra

Fakultät

Modulverantwortliche*r

Turnus (Beginn)

Jedes Wintersemester

Leistungspunkte und Dauer

10 Leistungspunkte

Die Angaben zur Moduldauer finden Sie bei den Studiengängen, in denen das Modul verwendet wird.

Kompetenzen

Die Studierenden beherrschen die grundlegenden Inhalte und Methoden der Kommutativen Algebra, insbesondere können sie eigenständig auch sehr komplexe und ein hohes Maß an fachlichen Kompetenzen erfordernde Beweise in diesem Gebiet führen. Sie sind in der Lage, zentrale Begriffe der Theorie zu definieren und im Kontext anzuwenden. Sie kennen Anwendungen der Theorie und können Beispiele zur Veranschaulichung von Konzepten und Theoremen verwenden.
Ferner erkennen die Studierende weiter reichende Zusammenhänge zu bereits erarbeiteten mathematischen Sachverhalten. Sie können die bislang erlernten Kenntnisse und Methoden auf tiefer liegende mathematische Problemfelder übertragen und anwenden. Aufgrund einer intensiveren Auseinandersetzung erweitern die Studierende auch ihre mathematische Intuition.
In den Übungen bauen die Studierende ihre Fähigkeit zur fachmathematischen Diskussion aus und bereiten sich so weiter auf die Anforderungen des Mastermoduls, insbesondere auf die fachliche Diskussion im Rahmen des Masterseminarvortrags und die Verteidigung Ihrer Masterarbeit, vor.

Lehrinhalte

Kommutative Algebra ist die Theorie kommutativer Ringe, ihrer Ideale und Moduln. Sie stellt essentielles Handwerkszeug für viele Gebiete der modernen Mathematik zur Verfügung, etwa die algebraische Zahlentheorie und algebraische Geometrie.

In der Vorlesung werden grundlegende Aspekte dieser klassischen Theorie entwickelt, etwa

  • Ideale, Primideale, Radikale
  • Lokalisierung von Ringen und Moduln
  • Primaerzerlegung
  • Ganze Erweiterungen
  • Noether Normalisierung
  • Nullstellensatz
  • Noethersche Ringe
  • Artinsche Ringe
  • Diskrete Bewertungsringe
  • Dedekindringe
  • Vervollständigungen
  • Dimensionstheorie

Empfohlene Vorkenntnisse

Solide Kenntnisse in Algebra

Notwendige Voraussetzungen

Erläuterung zu den Modulelementen

Modulstruktur: 1 SL, 1 bPr 1

Veranstaltungen

Lecture Commutative Algebra
Art Vorlesung
Turnus WiSe
Workload5 60 h (60 + 0)
LP 2 [Pr]
Tutorials Commutative Algebra
Art Übung
Turnus WiSe
Workload5 90 h (30 + 60)
LP 3 [SL]

Studienleistungen

Zuordnung Prüfende Workload LP2
Lehrende der Veranstaltung Tutorials Commutative Algebra (Übung)

Regelmäßiges Bearbeiten der Übungsaufgaben, jeweils mit erkennbarem Lösungsansatz sowie die Mitarbeit in den Übungsgruppen zu der Vorlesung des Moduls. Zu der Mitarbeit in der Übungsgruppe gehören in der Regel das zweimalige Vorrechnen von Übungsaufgaben nach Aufforderung sowie regelmäßige Beiträge zur fachlichen Diskussion in der Übungsgruppe, etwa in Form von fachlichen Kommentaren und Fragen zu den vorgestellten Lösungsvorschlägen. Die Veranstalterin/der Veranstalter kann einen Teil der Übungsaufgaben durch Präsenzübungen ersetzen.

siehe oben siehe oben

Prüfungen

e-Klausur o. Klausur o. mündliche e-Prüfung o. mündliche Prüfung
Zuordnung Prüfende Lehrende der Veranstaltung Lecture Commutative Algebra (Vorlesung)
Gewichtung 1
Workload 150h
LP2 5

(elektronische) Klausur in Präsenz von in der Regel 120 Minuten, mündliche Prüfung in Präsenz oder auf Distanz von in der Regel 40 Minuten. Eine elektronische Klausur auf Distanz ist nicht zulässig.

In diesen Studiengängen wird das Modul verwendet:

Studiengang Profil Empf. Beginn 3 Dauer Bindung 4
Mathematical Economics / Master of Science [FsB vom 28.02.2025] Mathematics 1. o. 2. o. 3. ein Semes­ter Wahl­pflicht
Mathematical Economics / Master of Science [FsB vom 28.02.2025] Economics 1. o. 2. o. 3. ein Semes­ter Wahl­pflicht
Mathematics / Master of Science [FsB vom 28.02.2025] 1. o. 2. o. 3. ein Semes­ter Wahl­pflicht

Automatische Vollständigkeitsprüfung

In diesem Modul kann eine automatische Vollständigkeitsprüfung vom System durchgeführt werden.


Legende

1
Die Modulstruktur beschreibt die zur Erbringung des Moduls notwendigen Prüfungen und Studienleistungen.
2
LP ist die Abkürzung für Leistungspunkte.
3
Die Zahlen in dieser Spalte sind die Fachsemester, in denen der Beginn des Moduls empfohlen wird. Je nach individueller Studienplanung sind gänzlich andere Studienverläufe möglich und sinnvoll.
4
Erläuterungen zur Bindung: "Pflicht" bedeutet: Dieses Modul muss im Laufe des Studiums verpflichtend absolviert werden; "Wahlpflicht" bedeutet: Dieses Modul gehört einer Anzahl von Modulen an, aus denen unter bestimmten Bedingungen ausgewählt werden kann. Genaueres regeln die "Fächerspezifischen Bestimmungen" (siehe Navigation).
5
Workload (Kontaktzeit + Selbststudium)
SoSe
Sommersemester
WiSe
Wintersemester
SL
Studienleistung
Pr
Prüfung
bPr
Anzahl benotete Modul(teil)prüfungen
uPr
Anzahl unbenotete Modul(teil)prüfungen
Diese Leistung kann gemeldet und verbucht werden.