Achtung: Auf dieser Seite wird ein eingestelltes Modulangebot angezeigt.
Wird nicht mehr angeboten
10 Leistungspunkte
Die Angaben zur Moduldauer finden Sie bei den Studiengängen, in denen das Modul verwendet wird.
Dieses Modul legt die Grundlagen der eindimensionalen Differential- und Integralrechnung. Die Studierenden sollen das Verständnis für die grundlegenden Prinzipien der Analysis entwickeln und die Grundbegriffe und -techniken einüben und sicher beherrschen können. Darüber hinaus sollen die mathematische Arbeitsweise an konkreten Fragestellungen erlernt, mathematische Intuition entwickelt und die Entwicklung der Analysis exemplarisch an zentralen Begriffen nachvollzogen werden.
Den Kompetenzerwerb in den Grundtechniken des mathematischen Arbeitens, die Fähigkeit zur Anwendung der Methoden, die Präsentations- und Kommunikationsfähigkeit sowie Ausdauer als mathematische Grundkompetenz weisen die Studierenden in den Übungen nach. Das Verständnis der Zusammenhänge und Begriffe wird in der Abschlussprüfung nachgewiesen.
Vollständige Induktion, Körper- und Anordnungsaxiome, Reelle und Komplexe Zahlen, Folgen und Reihen, Grenzwerte, Konvergenzkriterien, Exponentialfunktion, Trigonometrische Funktionen, Stetigkeit, Zwischenwertsatz, stetige Funktionen auf kompakten Intervallen, Differentiation, Mittelwertsatz, Lokale Extrema, Riemannsche Integration, Uneigentliche Integrale, Funktionenfolgen und -reihen, Potenzreihen, Taylorreihen.
Solide Schulkenntnisse im Mathematik, wie sie in einem Leistungskurs erworben werden.
—
Modulstruktur: 1 bPr 1
Portfolio aus Übungsaufgaben, die veranstaltungsbegleitend und in der Regel wöchentlich gestellt werden, und Abschlussklausur (in der Regel 90 min) oder mündlicher Abschlussprüfung (in der Regel 30 min). Die Übungsaufgaben ergänzen und vertiefen den Inhalt der Vorlesung.
Mitarbeit in den Übungsgruppen (Zweimaliges Vorrechnen von Übungsaufgaben nach Aufforderung. Die Veranstalterin/der Veranstalter kann einen Teil der Übungsaufgaben durch Präsenzübungen ersetzen.)
Nachweis einer ausreichenden Zahl korrekt gelöster Übungsaufgaben (in der Regel 50% der im Semester für das Lösen der Aufgaben erzielbaren Punkte).
Die Abschlussprüfung bezieht sich auf den Inhalt der Vorlesung und der Übung und dient der Bewertung.
Bisheriger Angebotsturnus war jedes Semester.
Studiengang | Variante | Empf. Beginn 3 | Dauer | Bindung 4 |
---|---|---|---|---|
Mathematik / Bachelor [FsB vom 30.09.2016 mit Änderung vom 10.12.2024] | Kleines Nebenfach (fw) | 1. o. 2. | ein Semester | Pflicht |
Mathematik / Bachelor [FsB vom 15.02.2012 mit Berichtigung vom 15.07.2013 und Änderungen vom 03.12.2012, 15.09.2014 und 15.12.2016] | Kleines Nebenfach (fw) | 1. o. 2. | ein Semester | Pflicht |
Mathematik / Bachelor [FsB vom 15.02.2012 mit Berichtigung vom 15.07.2013 und Änderungen vom 03.12.2012 und 15.12.2016] | Kleines Nebenfach (fw) | 1. o. 2. | ein Semester | Pflicht |
In diesem Modul kann eine automatische Vollständigkeitsprüfung vom System durchgeführt werden.