Modul 39-Inf-BDA_ver1 Big Data Analytics

Achtung: Auf dieser Seite wird ein auslaufendes Modulangebot angezeigt.

Fakultät

Modulverantwortliche*r

Turnus (Beginn)

Auslaufendes Angebot

Neuere Version dieses Moduls

Leistungspunkte und Dauer

5 Leistungspunkte

Die Angaben zur Moduldauer finden Sie bei den Studiengängen, in denen das Modul verwendet wird.

Kompetenzen

Die Studierenden erlernen in den Vorlesungen und Übungen Kompetenzen bei der Durchführung von Data-Mining-Aufgaben bei sehr großen Datenmengen, die nicht im Hauptspeicher gespeichert werden können. Die Vorlesungen liefern die Schlüsselideen der Ähnlichkeitssuche unter Verwendung von Minhashing und lokalitätssensitivem Hashing, der Verarbeitung von Datenströmen, bei denen Daten so schnell ankommen, dass sie sofort verarbeitet werden müssen oder sonst verloren gehen, von Web-bezogenen Algorithmen wie dem Google PageRank, von Algorithmen um häufige Itemsets, Assoziationsregeln und häufige Teilgraphen zu finden, Algorithmen zur Analyse der Struktur von großen Graphen, wie z. B. von sozialen Netzwerkgraphen, und des MapReduce-Prinzips, um parallele Algorithmen zu entwerfen. Das Modul beinhaltet eine Klausur zu Semesterende.

Lehrinhalte

Das Modul Big Data Analytics befasst sich mit Methoden und Algorithmen im Kontext der Analyse von Big Data. Insbesondere werden folgende Themen behandelt:

  1. Suchen von ähnlichen Objekten
  2. Analyse von Datenströmen
  3. PageRank
  4. MapReduce
  5. Suche nach häufigen Teilmengen
  6. Suche nach häufigen Teilgraphen
  7. Mining von sozialen Netzwerkgraphen
  8. Empfehlungssysteme

Empfohlene Vorkenntnisse

Wissen über Datenbanken kann hilfreich sein.

Notwendige Voraussetzungen

Erläuterung zu den Modulelementen

Modulstruktur: 1 bPr 1

Veranstaltungen

Big Data Analytics
Art Vorlesung
Turnus SoSe
Workload5 60 h (30 + 30)
LP 2 [Pr]
Big Data Analytics
Art Übung
Turnus SoSe
Workload5 60 h (30 + 30)
LP 2

Prüfungen

Portfolio mit Abschlussprüfung
Zuordnung Prüfende Lehrende der Veranstaltung Big Data Analytics (Vorlesung)
Gewichtung 1
Workload 30h
LP2 1

Portfolio aus Übungs- oder Programmieraufgaben, die veranstaltungsbegleitend und in der Regel wöchentlich gestellt werden, und Abschlussklausur (60 Minuten) oder mündlicher Abschlussprüfung (in der Regel 15 min). Die Übungsaufgaben ergänzen und vertiefen den Inhalt der Vorlesung.
Nachweis einer ausreichenden Zahl korrekt gelöster Übungsaufgaben (in der Regel 50% der im Semester für das Lösen der Aufgaben erzielbaren Punkte).
Die abschließende mündliche Prüfung bezieht sich auf den Stoff der Vorlesung und der Übungen.

Weitere Hinweise

Empfohlene Literatur:

  • Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", 2nd Edition, Cambridge University Press, 2014.
  • Tom White, "Hadoop: The Definitive Guide Storage and Analysis at Internet Scale", 3rd edition, O'Reilly
  • Viktor Mayer-Schönberger, Kenneth Cukier, "Big Data: A Revolution That Will Transform How We Live, Work and Think", John Murray, 2013

Bisheriger Angebotsturnus war jedes Sommersemester.

In diesen Studiengängen wird das Modul verwendet:

Studiengang Profil Empf. Beginn 3 Dauer Bindung 4
Data Science / Master of Science [FsB vom 06.04.2018 mit Änderungen vom 01.07.2019, 02.03.2020, 21.03.2023 und 10.12.2024] Variante 1 2. ein Semes­ter Pflicht
Data Science / Master of Science [FsB vom 06.04.2018 mit Änderungen vom 01.07.2019, 02.03.2020, 21.03.2023 und 10.12.2024] Variante 2 2. ein Semes­ter Wahl­pflicht

Automatische Vollständigkeitsprüfung

In diesem Modul kann eine automatische Vollständigkeitsprüfung vom System durchgeführt werden.


Legende

1
Die Modulstruktur beschreibt die zur Erbringung des Moduls notwendigen Prüfungen und Studienleistungen.
2
LP ist die Abkürzung für Leistungspunkte.
3
Die Zahlen in dieser Spalte sind die Fachsemester, in denen der Beginn des Moduls empfohlen wird. Je nach individueller Studienplanung sind gänzlich andere Studienverläufe möglich und sinnvoll.
4
Erläuterungen zur Bindung: "Pflicht" bedeutet: Dieses Modul muss im Laufe des Studiums verpflichtend absolviert werden; "Wahlpflicht" bedeutet: Dieses Modul gehört einer Anzahl von Modulen an, aus denen unter bestimmten Bedingungen ausgewählt werden kann. Genaueres regeln die "Fächerspezifischen Bestimmungen" (siehe Navigation).
5
Workload (Kontaktzeit + Selbststudium)
SoSe
Sommersemester
WiSe
Wintersemester
SL
Studienleistung
Pr
Prüfung
bPr
Anzahl benotete Modul(teil)prüfungen
uPr
Anzahl unbenotete Modul(teil)prüfungen
Diese Leistung kann gemeldet und verbucht werden.