Achtung: Auf dieser Seite wird ein auslaufendes Modulangebot angezeigt.
Auslaufendes Angebot
5 Leistungspunkte
Die Angaben zur Moduldauer finden Sie bei den Studiengängen, in denen das Modul verwendet wird.
Die Studierenden erlernen in den Vorlesungen und Übungen Kompetenzen bei der Durchführung von Data-Mining-Aufgaben bei sehr großen Datenmengen, die nicht im Hauptspeicher gespeichert werden können. Die Vorlesungen liefern die Schlüsselideen der Ähnlichkeitssuche unter Verwendung von Minhashing und lokalitätssensitivem Hashing, der Verarbeitung von Datenströmen, bei denen Daten so schnell ankommen, dass sie sofort verarbeitet werden müssen oder sonst verloren gehen, von Web-bezogenen Algorithmen wie dem Google PageRank, von Algorithmen um häufige Itemsets, Assoziationsregeln und häufige Teilgraphen zu finden, Algorithmen zur Analyse der Struktur von großen Graphen, wie z. B. von sozialen Netzwerkgraphen, und des MapReduce-Prinzips, um parallele Algorithmen zu entwerfen. Das Modul beinhaltet eine Klausur zu Semesterende.
Das Modul Big Data Analytics befasst sich mit Methoden und Algorithmen im Kontext der Analyse von Big Data. Insbesondere werden folgende Themen behandelt:
Wissen über Datenbanken kann hilfreich sein.
—
Modulstruktur: 1 bPr 1
Portfolio aus Übungs- oder Programmieraufgaben, die veranstaltungsbegleitend und in der Regel wöchentlich gestellt werden, und Abschlussklausur (60 Minuten) oder mündlicher Abschlussprüfung (in der Regel 15 min). Die Übungsaufgaben ergänzen und vertiefen den Inhalt der Vorlesung.
Nachweis einer ausreichenden Zahl korrekt gelöster Übungsaufgaben (in der Regel 50% der im Semester für das Lösen der Aufgaben erzielbaren Punkte).
Die abschließende mündliche Prüfung bezieht sich auf den Stoff der Vorlesung und der Übungen.
Empfohlene Literatur:
Bisheriger Angebotsturnus war jedes Sommersemester.
Studiengang | Profil | Empf. Beginn 3 | Dauer | Bindung 4 |
---|---|---|---|---|
Data Science / Master of Science [FsB vom 06.04.2018 mit Änderungen vom 01.07.2019, 02.03.2020, 21.03.2023 und 10.12.2024] | Variante 1 | 2. | ein Semester | Pflicht |
Data Science / Master of Science [FsB vom 06.04.2018 mit Änderungen vom 01.07.2019, 02.03.2020, 21.03.2023 und 10.12.2024] | Variante 2 | 2. | ein Semester | Wahlpflicht |
In diesem Modul kann eine automatische Vollständigkeitsprüfung vom System durchgeführt werden.