240850 Hodge-Theorie (V) (WiSe 2011/2012)

Contents, comment

Die Hodge-Theorie stellt Kohomologieklassen von kompakten Riemannschen Mannigfaltigkeiten durch harmonische Differentialformen dar. Im Fall von Kählerschen Mannigfaltigkeiten erhält man zusätzlich eine Hodge-Zerlegung und eine Lefschetz-Zerlegung der Kohomologie. Diese Strukturen sind wichtige Invarianten der komplexen Struktur.

Requirements for participation, required level

Grundkenntnisse über komplexe Mannigfaltigkeiten und de-Rham-Kohomologie

Bibliography

  • C. Voisin, Hodge theory and algebraic geometry I, Cambridge University Press 2002
  • R. O. Wells, Differential analysis on complex manifolds, Prentice-Hall 1973

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  
weekly Di 16-18 Unpublished 10.10.2011-03.02.2012
not on: 11/1/11
weekly Mi 14-16 C01-136 10.-26.10.2011
weekly Fr 14-16 V4-119 28.10.2011-03.02.2012
not on: 11/11/11
one-time Do 12-14 C01-246 10.11.2011
weekly Di 16-18 V3-204 15.11.2011-03.02.2012

Hide passed dates <<

Subject assignments

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Mathematik / Diplom (Enrollment until SoSe 2008) Wahl 7. 8. nicht scheinfähig HS
Mathematik / Master (Enrollment until SoSe 2011) MM09S Wahlpflicht 3. 6 unbenotet  

No more requirements
No eLearning offering available
Address:
WS2011_240850@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_27753816@ekvv.uni-bielefeld.de
Notes:
Additional notes on the electronic mailing lists
Last update basic details/teaching staff:
Friday, December 11, 2015 
Last update times:
Friday, November 11, 2011 
Last update rooms:
Friday, November 11, 2011 
Type(s) / SWS (hours per week per semester)
lecture (V) / 4
Department
Faculty of Mathematics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=27753816
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
27753816