Dynamic optimization (or intertemporal optimization) plays a more and more important role in economics and business studies, since economic agents may consider not only what happens today but also what may happen in the future. A dynamic optimization problem poses the question of what is the optimal magnitude of a choice variable in each period of time within the planning period (discrete-time case) or at each point of time in a given time interval (continuous-time case). In this course, the techniques for optimization in intertemporal models -- discrete- or continuous-time, deterministic or stochastic -- will be introduced. Applications of these techniques in the field of economics and business will also be shown.
Content:
1. Introduction
Part I Discrete-time models
2. Deterministic models
2.1 Optimization priciples (Lagrange multiplicator, Bellman equation
Euler equation, Hamilitonian)
2.2 Pratice of Optimation (dynamic programming, Howard algorithm)
2.3 Examples on economics and business
2.4 linear quaratic dynamic programming and Kalman Filter
3. Stochastic models
3.1 optimization priciples
3.2 examples
4. Numerical implementation
4.1 computational alogorithm
4.2 approximation methods
4.3 numerical performance
Part II Continuous-time models
5. Calculus of variation
6. Optimal control theory
Rhythmus | Tag | Uhrzeit | Format / Ort | Zeitraum |
---|
Datum | Uhrzeit | Format / Raum | Kommentar zum Prüfungstermin |
---|
Zeige vergangene Prüfungstermine >>
Studiengang/-angebot | Gültigkeit | Variante | Untergliederung | Status | Sem. | LP | |
---|---|---|---|---|---|---|---|
Betriebswirtschaftslehre / Diplom | (Einschreibung bis SoSe 2005) | B3b; WP05; WP11 | Wahlpflicht | HS | |||
Volkswirtschaftslehre / Diplom | (Einschreibung bis SoSe 2005) | V2; WP05; WP11 | Wahlpflicht | HS | |||
Wirtschaftsmathematik / Diplom | (Einschreibung bis SoSe 2005) | Wahlpflicht | HS |