Start my eKVV Studieninformation Lernräume Prüfungsverwaltung Anmelden

392119 Musterklassifikation (V) (WiSe 2017/2018)

Inhalt, Kommentar

Mustererkennung gehört zu den Bemühungen der modernen Informationstechnik, Wahrnehmungsleistungen zu automatisieren, wie wir sie sonst von natürlichen Vorbildern kennen. Prominente Anwendungsfelder sind das Erkennen von Schrift, das Verstehen gesprochener Sprache und die Interpretation von Bildern. In verschiedenen Bereichen wie der Ökologie, der Mikrobiologie und der Robotik werden Mustererkennungsverfahren zunehmend zur Analyse von Meßsequenzen eingesetzt.

In der Vorlesung wird die Klassifikation von Mustern detailliert untersucht. Klassifikation bedeutet dabei, daß ein Muster als Gesamtheit einem Begriff, d.h. einer Klasse zugewiesen wird. Als Familien von Klassifikatoren werden wahrscheinlichkeitstheoretische Ansätze wie z.B. der Bayes-Klassifikator oder Mischverteilungsklassifikatoren, der Polynomklassifikator, Hidden-Markov-Modelle sowie das Multilayer-Perzeptron als neuronale Technik behandelt. In der Vorlesung wird neben der Vermittlung der Theorie der verschiedenen Klassifikationsverfahren auch ein Schwerpunkt auf die praktischen Eigenschaften der jeweiligen Techniken gelegt. Grundlagen zum wissenschaftlichen Umgang mit Trainings- und Testdaten werden ebenso vermittelt.

Übungen zur Veranstaltung werden semesterbegleitend angeboten. Die Besprechung findet ca. alle 3 Wochen statt.

Bitte ab September dringend Termin für die Übungen eintragen. Link auf den Doodle Poll wird dann hier erscheinen.

Literaturangaben

H. Niemann: Klassifikation von Mustern, Springer-Verlag, Berlin 1983
K. Fuhanaga: Introduction to Statistical Pattern Recognition. Academic Press, Boston, 2. Auflage, 1990
J. Schürmann: Pattern Classification, John Wiley & Sons, New York, 1996

Lehrende

Termine (Kalendersicht )

Rhythmus Tag Uhrzeit Ort Zeitraum  

Zeige vergangene Termine >>

Klausuren

  • Keine gefunden

Fachzuordnungen

Modul Veranstaltung Leistungen  
39-Inf-MK Musterklassifikation Musterklassifikation benotete Prüfungsleistung
Studieninformation

Die verbindlichen Modulbeschreibungen enthalten weitere Informationen, auch zu den "Leistungen" und ihren Anforderungen. Sind mehrere "Leistungsformen" möglich, entscheiden die jeweiligen Lehrenden darüber.

Konkretisierung der Anforderungen
Keine Konkretisierungen vorhanden
Lernraum
TeilnehmerInnen
Automatischer E-Mailverteiler der Veranstaltung
Änderungen/Aktualität der Veranstaltungsdaten
Sonstiges