The course will cover Large Language Models, Large Vision Models, Diffusion Models, and Transformers. This will include LLaMA, LLaVA, Stable Diffusion, BERT, ChatGPT, ViT, etc. These are neural network architectures that have become popular in recent years for their ability to handle large amounts of data and achieve state-of-the-art performance on a wide range of tasks. By the end of the course, you will have a strong theoretical foundation and be well-equipped to apply these techniques to real-world problems.
Lectures will begin on Monday, April 8 at 8:30 am ONLINE [1] with an introductory lecture explaining the topics and structure of the course.
Tutorials will begin on Tuesday, April 30 at 8:30 am ONLINE [3].
Most of the lectures will be available in video recordings.
[1] Zoom: https://uni-bielefeld.zoom.us/j/67461280386?pwd=NUNRSjZHV1FicGlack1JWmJHTDFVZz09
Meeting ID: 674 6128 0386
Passcode: 123123
Discord channel lecture-2024sose: https://discord.gg/qhtARBhN
Rhythmus | Tag | Uhrzeit | Format / Ort | Zeitraum |
---|
Modul | Veranstaltung | Leistungen | |
---|---|---|---|
39-M-Inf-AI-app Applied Artificial Intelligence | Applied Artificial Intelligence: Vorlesung | Studieninformation | |
- | benotete Prüfungsleistung | Studieninformation | |
39-M-Inf-AI-app-foc Applied Artificial Intelligence (focus) | Applied Artificial Intelligence (focus): Vorlesung | Studieninformation | |
- | benotete Prüfungsleistung | Studieninformation | |
39-M-Inf-VDM Vertiefung Datamining | Datamining II | unbenotete Prüfungsleistung
benotete Prüfungsleistung |
Studieninformation |
Die verbindlichen Modulbeschreibungen enthalten weitere Informationen, auch zu den "Leistungen" und ihren Anforderungen. Sind mehrere "Leistungsformen" möglich, entscheiden die jeweiligen Lehrenden darüber.
Types of exams and conditions for credits:
Option 1: Oral exam with mark about the lecture topics. Successful oral exam yields 5 credits.
Option 2: Oral exam with questions about a mini-project. Successful mini-project report and oral exam with questions about the mini-project yields 5 credits.