Herr Dr. Sören Sprehe: Lehre

Wochenplan Kontakt

Veranstaltungen aus den letzten Semestern:

WiSe 2025/2026

Belegnr Lehrende/r Thema Art Termine Mein eKVV
240092 Alfes, Sprehe   Seminar/Bachelorarbeit Algebra
Begrenzte Teilnahmezahl: 15
S Di 12-14 [13.10.2025-06.02.2026]
240153 Alfes, Sprehe   Algebraic Number Theory Course taught in English V Di 10-12 [13.10.2025-06.02.2026]
Fr 10-12 [13.10.2025-06.02.2026]

SoSe 2024

Belegnr Lehrende/r Thema Art Termine Mein eKVV
240032 Sprehe   Proseminar Quadratische Formen
Begrenzte Teilnahmezahl: 15
PS Fr 10-12 in V4-116 [08.04.-19.07.2024]
241038 Sprehe   Ausgewählte Kapitel der arithmetischen Geometrie S Do 12-14 in V5-148 [08.04.-19.07.2024]
Do 14-16 in T2-205 [18.04.2024]
Do 14-16 in H8 [02.05.2024]
Do 14-16 in T2-205 [23.05.2024]
Do 14-16 in X-E1-107 [13.06.2024]
Do 14-16 in H8 [27.06.2024]
...

WiSe 2022/2023

Belegnr Lehrende/r Thema Art Termine Mein eKVV
241256 Sprehe   Rigid meromorphic cocycles III
Recently H.Darmon and J.Vonk initiated the theory of p-adic singular moduli for real quadratic fields. In this theory classical modular functions such as the j-invariant are replaced by so-called rigid meromorphic cocycles. These are SL2(Z[1/p])-invariant modular symbols with values in rigid meromorphic functions on Drinfeld’s p-adic upper half plane. One of their first results states that the divisor of a rigid meromorphic cocycle is supported on finitely many SL2(Z[1/p])-orbits of real quadratic points, i.e. points which generate real quadratic extensions of Q. This highly suggests that rigid meromorphic cocyles are a real quadratic analogue of Borcherds’ singular theta lifts of modular forms of weight 1/2. This approach does not generalize easily to a more general setup. The aim of this seminar is to follow L.Gehrmann's work "On Quaterionic Rigid Meromorphic", where he proves the algebraicity of divisors in a more general situation by purely cohomological methods.
S Do 14-16 in U2-232 [10.10.2022-03.02.2023]

Zeige ältere Semester